General oracle inequalities for model selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oracle inequalities for computationally adaptive model selection

We analyze general model selection procedures using penalized empirical loss minimization under computational constraints. While classical model selection approaches do not consider computational aspects of performing model selection, we argue that any practical model selection procedure must not only trade off estimation and approximation error, but also the computational effort required to co...

متن کامل

Oracle inequalities for computationally budgeted model selection

We analyze general model selection procedures using penalized empirical loss minimization under computational constraints. While classical model selection approaches do not consider computational aspects of performing model selection, we argue that any practical model selection procedure must not only trade off estimation and approximation error, but also the effects of the computational effort...

متن کامل

Optimal oracle inequalities for model selection

Abstract: Model selection is often performed by empirical risk minimization. The quality of selection in a given situation can be assessed by risk bounds, which require assumptions both on the margin and the tails of the losses used. Starting with examples from the 3 basic estimation problems, regression, classification and density estimation, we formulate risk bounds for empirical risk minimiz...

متن کامل

General Oracle Inequalities for Gibbs Posterior with Application to Ranking

In this paper, we summarize some recent results in Li et al. (2012), which can be used to extend an important PAC-Bayesian approach, namely the Gibbs posterior, to study the nonadditive ranking risk. The methodology is based on assumption-free risk bounds and nonasymptotic oracle inequalities, which leads to nearly optimal convergence rates and optimal model selection to balance the approximati...

متن کامل

Sparse oracle inequalities for variable selection via regularized quantization

We give oracle inequalities on procedures which combines quantization and variable selection via a weighted Lasso k-means type algorithm. The results are derived for a general family of weights, which can be tuned to size the influence of the variables in different ways. Moreover, these theoretical guarantees are proved to adapt the corresponding sparsity of the optimal codebooks, suggesting th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2009

ISSN: 1935-7524

DOI: 10.1214/08-ejs254